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Commentary

Environmental exposures often consist of 
exposure to multiple agents. A complete 
understanding of interactive effects would 
require both the ability to identify unexpected 
interactions in order to improve our biologi­
cal understanding of mechanisms, and an 
ability to predict combination effects in order 
to improve risk assessment and public health 
decision making.

Both epidemiologists and toxicologists 
approach interaction assessment by defining 
a noninteractive model; departures from the 
model are then considered interactive (e.g., 
synergistic or antagonistic). The choice of 
model—the definition of “noninteraction”—is 
the critical first step because appropriate models 
will lead to more biologically informative 
conclusions regarding synergistic or antagonistic 
action. The definition of noninteraction in the 
two fields, however, proceeds very differently.

Epidemiologists have divided interactions 
into several “contexts,” referring to statisti­
cal, biological, public health, and individual 
interactions (Blot and Day 1979; Rothman 
et al. 1980). Most methods that epidemiolo­
gists and biostatisticians use to assess inter­
action are explicitly statistical in nature and 
should not, as these authors pointed out, be 
expected to provide information about bio­
logic mechanism of action. For inference about 
causal mechanisms, epidemiologists have often 
relied on a single criterion, the additivity of risk 
differences, considering deviation from risk 

difference additivity (RDA) to be the single 
appropriate metric for examination of biologi­
cal interaction (Ahlbom and Alfredsson 2005). 
By contrast, toxicologists (and pharmacolo­
gists) have developed several models for bio­
logical noninteraction, each of which is rooted 
in a simple assumption about mode of action.

Although the word “interaction” is used 
in both fields, these divergent approaches have 
led to dramatically different understandings of 
its meaning. Here we explore these differences 
and demonstrate that some combinations 
considered noninteractive by toxicologists are 
likely to meet the criteria for interaction in an 
epidemiologic analysis.

Epidemiologic Analysis of 
Interaction
Epidemiologic theory of biological inter­
action is rooted in counterfactual models that 
describe all possible responses of individuals 
to different patterns of exposure. Both the 
counterfactual susceptibility types (CFST) 
model and the sufficient component causes 
(“causal pies”) model are deterministic descrip­
tions of binary outcomes due to dichotomous 
exposures, and are intended to define the 
range of possible biological outcomes without 
reference to any specific mechanism (Rothman 
et al. 2008).

The CFST model describes all possible 
ways by which individuals of different counter­
factual susceptibility types could react to a 

binary exposure (Greenland and Poole 1988). 
This model is usually considered deterministic, 
where each individual always responds 
according to their type. Given a single binary 
exposure X with a binary outcome, there are 
four possible types for the exposures x = 0 
(unexposed) and x = 1 (exposed) (Table 1) 
(Greenland and Robins 1986). From 
this description of the possible individual 
responses, one can construct the response in 
the population as a whole. Taking p1 through 
p4 to represent the proportion of each type 
in the population, one calculates risks in the 
population by simply adding proportions. 
For example, the risk in the population when 
exposed to X is simply p1 + p2 (types 3 and 4 
do not have the outcome and thus do not 
contribute to the risk).

The model is easily extended to two expo­
sures (Greenland and Poole 1988). Having 
listed all possible response types for expo­
sures X and Z (Table 2), one may describe 
a noninteractive population by eliminating 
the interactive types from the model (i.e., 
setting the proportion of those types in the 
population to zero). The interactive types 
were identified by Miettinen (1982) and clari­
fied by Greenland and Poole (1988); many 
correspond to intuitive notions of synergy 
or antagonism. In the words of Rothman 
et al. (2008), “The defining feature of these 
10  interaction types is that we cannot say 
what the effect of X will be … unless we 
know that person’s value for Z  ….” This defi­
nition depends on the interdependence of 
action of causal factors; indeed, some authors 
refer to noninteraction more specifically as 
“noninterdependence” (Greenland and Poole 
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1988), and some authors use the terms inter­
changeably (Greenland 1993).

Applying this definition, an individual 
of type 4 will always have the outcome when 
z = 1, regardless of the value of X; for this indi­
vidual, Z is causal and X ineffective. This is 
a noninterdependent (i.e., epidemiologically 
noninteractive) type, because the effect of Z 
can be predicted without knowledge of the sta­
tus of exposure to X. By contrast, an individual 
of type 8 responds only to the combined expo­
sure X + Z. X and Z are thus interdependent in 
this type of individual: Without knowing the 
individual’s Z exposure, one cannot predict the 
result of an exposure to X. This corresponds to 
an intuitive definition of synergy, where both 
exposures are required to produce an effect.

Eliminating interdependent types leaves 
only types 1, 4, 6, 11, 13, and 16 in our 
population. Risks under the various exposure 
scenarios are designated as RXZ [e.g., R10 is 
the risk in a population exposed to X (x = 1) 
but not to Z (z = 0)]. By writing down risks 
in the four possible exposure combinations 
and rearranging them, one obtains a simple 
equation for noninterdependence (Rothman 
et al. 2008):

(R11 – R00) = (R10 – R00) + (R01 – R00).	 [1]

The risk difference due to the joint exposure is 
simply the sum of the risk differences due to 
the individual exposures. Because Equation 1 
was derived using only the noninterdependent 
types, a departure must imply the presence of 
interdependent types. Thus, RDA (additiv­
ity of the risk differences) is a criterion for 
noninterdependence. It is a necessary but not 
sufficient criterion, however, because inter­
dependent types may occur in a population 
in such a way as to satisfy the RDA equa­
tion (Rothman et al. 2008). Therefore, devia­
tion from RDA indicates interaction, but 
satisfying RDA does not prove lack of inter­
action. (We assume, here and below that bias 
and confounding are absent.)

The RDA criterion derives from counter­
factual models describing biological responses 
without depending on any specific mechanism. 
Therefore, deviation from RDA is seen as the 
fundamental criterion for biological inter­
action in epidemiology: “an unambiguous 
definition of biologic interaction” (Rothman 
2002). Although derived from binary models, 
the RDA criterion is also used for continuous 

epidemiologic exposures, including cholesterol, 
hypertension, age, coffee consumption, 
smoking, and others; these continuous values 
are typically categorized before RDA is applied 
(e.g., Hallqvist et al. 1996).

In practice, many of the epidemiologic 
parameters available for assessing interaction—
including Koopman’s “interaction contrast” 
(IC), Rothman’s S index, and Walker’s attrib­
utable fraction due to interaction I (A × B)—are 
derived from the RDA criterion (Koopman 
1981; Rothman 1976; Walker 1981). Other 
authors have demonstrated how to use Cox 
and logistic regression to find departures from 
additivity on the risk difference scale, with the 
explicit goal of assessing biological interaction 
(e.g., Andersson et al. 2005).

The Sham Combination 
in Epidemiology
It has long been recognized that shape of 
the dose–response curve (DRC) complicates 
interaction assessment when exposures are 
continuous (Greenland 1993). Rothman 
(1974) demonstrated an important implica­
tion of RDA for this situation in an inter­
esting thought experiment. Consider the 
construction of a response from a series of 
noninteracting “distinct causes” made up of 
successive doses of the same agent (assume 
that the outcome describes the risk in a popu­
lation). Starting with an initial dose X of 
1 unit, producing a risk R10, add an equal 
second dose, Z. Because the agents and doses 
are identical, R10 = R01. With no background 
risk, the RDA equation yields

	 R11 = R10 + R01 = 2R10.	 [2]

The “doubly exposed,” those receiving 2 units 
of dose, have twice the risk of the singly 
exposed. For this to be true, regardless of 
choice of dose, requires that the dose–response 

relationship be linear: The linear DRC repre­
sents noninteractivity (noninterdependence) 
under the RDA definition. Any nonlinear 
DRC will exhibit interdependence (synergy or 
antagonism) and may, in fact, exhibit synergy 
in one dose range and antagonism in another. 
Intuitively, when the dose–response rela­
tionship is nonlinear, we require knowledge 
of the initial dose—the position along the 
DRC—to predict the additional effect of the 
subsequent dose. The sham combination is a 
thought experiment, not a method used by 
epidemiologists to examine the shapes DRCs. 
Nevertheless, these conclusions logically fol­
low from the use of noninterdependence to 
derive RDA.

Toxicologic Analysis 
of Interaction
Unlike epidemiologists, toxicologists’ ideas 
about interaction do not start with counter­
factual models (i.e., describing responses of 
different types of individuals). Because modern 
toxicologists can control both the exposures and 
randomization of nearly identical subjects, they 
are typically little concerned with confounding 
or bias; from an epidemiologic point of view, 
they are essentially studying one type of 
individual. Although counterfactual models 
could be constructed for studies of diverse 
animal populations, they would require a large 
number of types to support the continuous 
exposures (and often continuous outcomes) 
of interest in toxicology. For example, some 
older toxicologic studies used a “quantal” 
model describing binary outcomes that occur 
when an individual’s tolerance for an exposure 
is exceeded (Finney 1971). This model is 
closely related to the CFST model because 
it deterministically predicts each individual’s 
outcome for any exposure condition once the 
individual’s threshold is known. (It could be 
expanded to include “doomed” individuals 

Table 2. CFST model for two exposures. 

Type
x = 1 
z = 1

x = 0 
z = 1

x = 1 
z = 0

x = 0 
z = 0 Description

1 1 1 1 1 Doomed
2a 1 1 1 0 X causal, Z causal, joint causation by X + Z
3a 1 1 0 1
4 1 1 0 0 Z causal, X ineffective
5a 1 0 1 1
6 1 0 1 0 X causal, Z ineffective
7a 1 0 0 1 X preventive, Z preventive, X + Z antagonizes
8a 1 0 0 0 X + Z causal
9a 0 1 1 1 X + Z preventive

10a 0 1 1 0 X causal, Z causal, X + Z antagonizes
11 0 1 0 1 X preventive, Z ineffective
12a 0 1 0 0
13 0 0 1 1 Z preventive, X ineffective
14a 0 0 1 0
15a 0 0 0 1 X preventive, Z preventive, joint prevention by X + Z
16 0 0 0 0 Immune

Outcomes are given as 0 or 1. 
aInterdependent types according to Greenland and Poole (1988); noninterdependent types are shaded. See also 
Miettinen (1982).

Table 1. CFST model for a single exposure.

Type x = 1 x = 0 Description
1 1 1 Doomed
2 1 0 X causal
3 0 1 X preventive
4 0 0 Immune

Outcomes are given as 0 or 1 for the exposed (x = 1) and 
unexposed (x = 0) scenarios (Greenland and Robins 1986).
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that develop disease with no exposure, or 
“immune” individuals that have an infinite 
threshold.) By analogy with the CFST model, 
each possible exposure threshold is a different 
susceptibility type; therefore, the continuous 
quantal model contains an infinite number of 
possible types. Instead of using counterfactual 
models, however, toxicologists begin the study 
of interaction with DRCs.

Like epidemiologists, toxicologists define 
“interaction” as a departure from a non­
interaction criterion, usually called the “null 
model” in toxicology. Unlike epidemiolo­
gists, toxicologists use several different null 
models. Starting with a null model, and 
the DRCs of each agent given individually, 
it is possible to construct the expected (non­
interactive) response to a combination expo­
sure. This approach dates back to Bliss (1939), 
who defined “synergistic action” as any case in 
which “the effectiveness of the mixture cannot 
be assessed from that of the individual ingre­
dients ….” For a toxicologist, a joint effect is 
considered noninteractive if it follows a simple 
biological expectation that can be predicted 
from the responses of the individual agents. 
(Null models are often said to describe “addi­
tive” effects; we avoid that term due to its 
potential for confusion.) These null models are 
also used in risk assessment to predict expected 
effects when more specific mechanistic details 
are not known [U.S. Environmental Protection 
Agency (EPA) 2000].

The simplest null model, commonly used 
by toxicologists by implication and often 
without justification, is effect summation: 

	 f (x,z) = f (x,0) + f (0,z), 	 [3]

where f (x,z) describes the joint response for 
exposure to agents x and z; f (x,0) and f (0,z) 
describe the DRC for each agent individually. 
Whether this definition includes a background 
response is not usually made explicit; for a 
more precise definition, we might subtract the 
background effect f (0,0) from each term:

f (x,z) – f (0,0) = f (x,0) – f (0,0)  
	 + f (0,z) – f (0,0). 	 [4]

The epidemiologic RDA criterion (Equation 1) 
is a special case of Equation  4 when the 
exposures are dichotomous. 

The Sham Combination 
in Toxicology
Effect summation may be intuitive (many 
toxicologists use it implicitly and uncritically), 
but it is generally considered insufficient. The 
major toxicologic argument against it is the 
“sham combination,” a thought experiment 
essentially identical to the one by Rothman 
described above but interpreted very differently 
(Berenbaum 1989).

Consider a “combination” of two expo­
sures, A and B, which actually consist of the 
same toxic agent. We take f (.) as describing 
the causal effect above the background. Effect 
summation (Equation 3) requires 

	 f (A,B) = f (A,0) + f (0,B),	 [5]

but because B is identical to A, this is equiva­
lent to

	 f (A + B) = f (A) + f (B).	 [6]

This last condition is met only if the DRC 
is linear in A. For example, if A = B, then 
f (A + B) = f (2A) = 2f (A). 

What happens if the DRC is not linear? 
Suppose it increases more rapidly than a lin­
ear response (Figure 1). With “sham” doses 
A = 0.4 units and B = 0.6 units of the same 
agent, the effect of the combination dose 
f (A + B) = f (0.4 + 0.6) = f (1.0) is much greater 
than the sum of the individual responses 
f (A) + f (B).

The toxicologic sham combination yields 
the same result we saw in Rothman’s thought 
experiment: f (A,B) = f (A,0) + f (0,B) only if 
f (.) is linear; that is, effect summation holds 
only for linear dose response. Toxicologists do 
not consider nonlinearity to have special bio­
logical significance, but consider the DRC of 
an agent to be a property of that agent (more 
precisely, a property of the agent working on a 
particular tissue or system). From a mechanis­
tic point of view, many nonlinear DRCs can 
be modeled by simple biological mechanisms 
(e.g., receptor filling) that toxicologists do not 
consider “interactive” in any important biologi­
cal sense. Indeed, Kortenkamp and Altenburger 
(1998) stated that “the conclusion that an 
agent interacts with itself in a synergistic way is 
absurd.” (There may be interesting exceptions, 
however. For example, the structural change in 
hemoglobin that results from allosteric bind­
ing of oxygen increases the availability of other 
binding sites to subsequent oxygen molecules. 
This is often referred to as “cooperativity.”)

If one considers different doses of an agent 
as not synergizing with (or antagonizing) each 
other, and the nonlinear DRC is therefore 
noninteractive, then the sham combination 
itself must be the noninteractive condition. 
This is the basis for the null model that Bliss 
(1939) called simple similar action, which is 
now called concentration addition (CA) or 
dose addition.

The CA model is most easily derived for 
the case of joint exposure to two agents, A 
and B, which are not identical but have paral­
lel DRCs differing only by a factor of potency 
(i.e., only in the amount of the agent required 
to produce the same effect). In that case, 
A can be considered a dilution of B by some 
factor γ, such that fA(A) = fB(γA). By the same 

logic, we can substitute for the joint effect 
fAB(A,B) =  fB(γA + B). Consider a specific 
response level E, which is caused by either 
doses AE or BE when given independently 
[i.e., E =  fA(AE) =  fB(BE)]. Any combination 
dose (A,B) will also cause E if it satisfies

	 A
A

B
B1

E E
= + .	 [7]

Equation  7 defines the null model of 
concentration addition. (The noninteractive 
sham combination is the special case where A is 
identical to B.) Because this derivation assumes 
that exposures A and B can be substituted for 
one another in proportion to their potencies, 
CA is usually considered appropriate for agents 
that act via a “similar” mechanism (U.S. EPA 
2000), although there has been considerable 
discussion as to the meaning of “similar” 
(Borgert et al. 2004). In assuming that A was a 
dilution of B, this derivation followed the toxic 
equivalency factor (TEF) model, a special case 
of CA where the relative potency γ is constant 
for all effect levels. This is the best-known 
implementation of CA, commonly used 
for assessing and predicting noninteractive 
effects of combinations of dioxin-like agents 
(Van den Berg et al. 2006). However, the 
assumption of a constant value of γ = BE/AE is 
not a requirement of the CA definition; more 
generally, γ can vary with effect level E if A 
and B have nonparallel DRCs (Howard and 
Webster 2009).

CA has rarely been mentioned by epidemio­
logists as a method for analyzing interaction 
(Cornfield 1975; Thomas and Whittemore 
1988), yet it is widely used by toxicologists, par­
ticularly in the TEF form. Just as we expressed 
the total effect of the joint exposure (A,B) in 
terms of an isoeffective dose of B given by 
γA + B, the TEF method allows toxicologists 
to express a mixture of similarly acting poly­
chlorinated dioxins, polychlorinated dibenzo­
furans, and polychlorinated biphenyls by a 
single equipotent dose. 

A = 0.4 B = 0.6 A + B = 1.0

Dose

Re
sp
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se

1.0

0.8

0.6

0.4

0.2

0

Figure 1. The “sham combination” of two identical 
agents, in doses A = 0.4 and B = 0.6, yields a larger 
response than the sum of the individual effects if 
the dose–response curve has increasing slope.
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Another important null model used by 
toxicologists is Bliss’s “independent joint 
action” (IA) (Bliss 1939). This model describes 
causal action in stochastic terms, where the 
joint outcome is the probabilistic sum,

	 P(A + B) = P(A) + P(B) – P(A)P(B).	 [8]

IA depends on the statistical independence 
of the two exposures; the same model has 
been discussed by epidemiologists (Rothman 
1974; Weinberg 1986). In the case of low 
risks, when the product term may be ignored, 
it is approximated by RDA (Rothman 1974). 
Similarly, effect summation is sometimes used 
by toxicologists and risk assessors as a low-risk 
approximation to IA (U.S. EPA 2000).

These three null models—IA, CA, and 
effect summation—are those most commonly 
used in toxicology. For toxicologists, CA and 
IA have firm biological foundations based on 
assumptions about mode of action; effect sum­
mation does not. In epidemiology, there is still 
discussion about the appropriate measure for 
interaction assessment, including the choice 
between the additive (risk difference) or multi­
plicative (risk ratio) scales (Weinberg 2012). 
CA, however, occurs on neither of these scales. 
Instead of adding or multiplying the effects 
of individual agents, CA involves addition of 
weighted exposures (i.e., isoeffective doses). 
CA’s inherent dependence on the shape of the 
DRC means that a straightforward mathemati­
cal combination (e.g., addition or multiplica­
tion) of the outcomes (i.e., the joint effects or 
risks) will not be an adequate description of 
joint action for a concentration-additive com­
bination unless the dose response is linear.

CA and RDA 
We have seen that RDA is a special case of 
the toxicologic model of effect summation. 
Here we examine its usefulness in evaluating 
concentration-additive exposures.

Counterfactual type 2 is a particularly 
interesting example: This is the only type in 
which each exposure is effective individu­
ally and the joint exposure is also effective. 
From the epidemiologic perspective, it is 

interdependent (Greenland and Poole 1988) 
because for the binary outcome of the CFST 
model, each exposure causes an effect only if 
the other is absent. Although this conclusion 
is logical, toxicologists would not consider it 
informative in the intended biological sense.

For example, one of the most common 
DRCs in toxicology is the Hill function,

	 f A A K
A

A n
A

n

+
= n^ h  ,	 [9]

where KA is the dose producing a half-maximal 
effect—a measure of potency—and n is a 
slope parameter. When n = 1, the DRC for a 
single agent increases less rapidly than linear 
(Figure 2), and a sham substitution would be 
considered antagonistic using effect summation 
(or RDA).

Consider a TEF model in which B has a 
relative potency γ compared with A; that is, 
fA(A) = fB(γ A). The joint effect for two (n = 1) 
agents is given by

,f A B f B B
B

KAB B
B

c
c

c
= +

+

+
=

+
A A

A
^ ^

^

^
h h

h

h
. 

�
[10]

Any given effect level between 0 and 1 can 
be achieved (or any tolerance exceeded) 
using A alone, B alone, or a combination of 
A and B. (The maximum possible effect of 1 
is reached in the limit of large dose.) If KA = 2 
and KB  = 1, A is half as potent as B, and 
γ = 0.5; by setting the exposure for each agent 
to a large value compared with its own K, we 
can calculate the responses to two dichoto­
mous doses (Figure 3A). 

Suppose that this thought experiment 
takes place in a population of identical indi­
viduals who, when subjected to this combi­
nation exposure, will suffer a binary health 
outcome above a response threshold of 0.8. 
The risks under these dichotomous exposure 
conditions are given in Figure 3B; each indi­
vidual responds according to the type 2 pat­
tern. This is an interdependent type because 
the outcome of exposure to A differs in strata 
of B. [Alternatively, consider a population of 

identical responders for whom Equation 10 
gives the probability of a binary outcome; 
because the individuals are identical, the 
responses in Figure 3A directly describe the 
population-level risks, which we may then 
use to test for epidemiologic interaction. 
Application of the interaction contrast or 
Rothman’s S (synergy) index (Rothman 1976) 
to these risks yields IC = –0.774 and S = 0.54, 
both clearly indicating interaction relative to 
RDA.] Yet from a toxicologic perspective, 
the system is concentration additive and non­
interactive. Furthermore, Equation 10 is con­
sistent with saturation of a receptor system, 
not considered a case of biological interaction 
by toxicologists.

Now consider counterfactual type  8, 
where the outcome occurs only with exposure 
to both agents. From the epidemiologic per­
spective, this interdependent type is intuitively 
synergistic. We can, however, produce results 
consistent with this situation using a CA 
model. Consider a Hill function with n = 2 
(Figure 2); many estrogenic agents have a 
value of n between 2 and 3 (Silva et al. 2002). 
Applying the TEF model, the joint effect is

, .f A B f B
B K

B
AB B

B
2

2
c

c

c
= + =

+ +

+
2A

A
A

^ ^
^

^
h h

h

h
 

�
[11]

Again taking KA = 2 and KB = 1 and choos­
ing dichotomous doses for the “exposed” that 
are very low compared with KA and KB, we 
obtain Figure 4A. Suppose that this experi­
ment takes place in identical individuals. For 
a binary outcome defined by a threshold of 
0.1, the risks are 1 in the doubly exposed 
and 0 elsewhere (Figure 4B), following the 
pattern of type  8 (synergistic) individu­
als. (For the probabilistic interpretation of 
Figure 4A, application of IC or the S index 
shows strong synergy with respect to RDA: 
IC = 0.049 and S = 1.8.) The choice of a dif­
ferent, much lower threshold in determin­
ing Figure 4B would produce results that 
appear characteristic of type 2 individuals. 
This change in results occurs because Figure 2 
rises steeply at low doses and flattens at high 

Figure 2. Hill functions with slope parameters n = 1 
(blue line) and n = 2 (dashed line). In each case, 
K = 1.
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Continuous response Risk (threshold of 0.8)
 

Dose of A Dose of A

0 10.0  0 10.0

0 0 0.833 0 0  1  
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f B

6.0  0.857 0.917 6.0  1  1  

Figure 3. Responses to the n = 1 TEF joint exposure.
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doses. From a toxicologic point of view, there 
is nothing remarkable about such a DRC or 
interactive about these results: The system is 
concentration additive.

Finally, we consider experimental evidence 
for such systems. Silva et al. (2002) tested a 
mixture of eight estrogenic agents in a yeast 
culture assay, and found that the results fol­
lowed the CA model. Importantly, each of 
these agents was exposed below its no observed 
effect concentration or EC01 (the concentra­
tion producing 1% effect)—in either case, 
a dose producing a very low effect—but the 
mixture produced a strong effect, larger by a 
factor of 20 than that predicted by effect sum­
mation. Using the criterion of effect summa­
tion, this is a clear case of synergy. However, 
the results are not interactive under CA 
because the CA model accurately predicts the 
joint effect from the individual components. 
Because each agent acts as a dilute form of 
estrogen, the low doses combine to cause a 
single effect through their common pathway.

Discussion
RDA derives from counterfactual models of 
susceptibility types. The underlying definition 
used to eliminate interactive types is that of 
interdependence. Basing interaction on this 
underlying idea seems intuitive. In individuals 
of identical CFST type, if the effect of X is the 
same regardless of any simultaneous exposure 
to Z, then Z evidently has no effect on X; that 
is, there is no dependence of the effect of X on 
the effect of Z (or vice versa).

Application of the RDA criterion to the 
sham substitution leads to the conclusion that 
a compound can synergize with or antago­
nize itself, or both, depending on the shape 
of the response and the specific doses evalu­
ated. Under the epidemiologic definition, 
a nonlinear dose response must be seen as 
interactive, a conclusion toxicologists do not 
consider biologically insightful. Following 
Bliss (1939), toxicologists instead define 
“interaction” as a synergistic or antagonistic 
departure from an expected joint effect. Risk 
assessors use the same approach, reserving 
“interaction” for departures from a model 
based on the action of individual components 
(U.S. EPA 2000). This approach construes 
the DRC itself—and thus the sham combina­
tion—as noninteractive. For similarly-acting 
compounds, the result is the CA null model.

The epidemiologic and toxicologic perspec­
tives rely on different definitions of interaction. 
Neither definition can be said to be true or 
false; the question is whether they lead to useful 
results. From the toxicologic perspective, the 
epidemiologic RDA criterion may supply little 
biologically useful information. Using simple 
biological models, we have shown that results 
consistent with two counterfactual susceptibil­
ity types considered by epidemiologists to be 

interdependent—type 2 and type 8—may be 
noninteractive from the toxicologic perspec­
tive. Concentration-additive exposures, like 
those in our examples, must always be inter­
dependent because each agent acts by contrib­
uting to a single pathway. Rather than using 
noninterdependence, the toxicologic approach 
defines noninteractivity using null models 
based on general modes of action. Deviation 
from the null model then implies something 
unexpected about the underlying biology.

Epidemiology has the advantage of a single 
definition for judging interaction, which is rig­
orously and logically applied. There are three 
definitions for “noninteraction” in general use 
in toxicology, with one, effect summation, 
considered inappropriate by mixtures toxicolo­
gists. The other two—CA and IA—are used 
as null models for compounds with similar or 
different modes of action, respectively. This 
raises the question of what toxicologists mean 
by “similar,” a question that is still debated. 
Despite this important issue, there has not 
been a proliferation of toxicologic null models, 
each with its corresponding type of synergy 
or antagonism. Although more sophisticated 
models have sometimes been proposed (e.g., 
Rider and LeBlanc 2005), toxicologists and 
risk assessors have generally restricted them­
selves to the models (CA and IA) originally 
suggested by Bliss (U.S. EPA 2000). Indeed, 
toxicology may be approaching a point sug­
gested by epidemiologists almost 30 years ago: 

Such classification [of biological models for inter­
action] could be a useful shorthand to describe 
categories of mechanisms, but only if such catego­
ries were widely and explicitly agreed upon in the 
scientific community. (Rothman et al. 1980)

Which approach for assessing interaction 
yields the most insight? Or will combina­
tions of the epidemiologic and toxicologic 
approaches work better? One approach to 
answering these questions is to apply both 
sets of methods to appropriate epidemiologic 
(or toxicologic) datasets. A necessary founda­
tion for comparing results or sharing ideas 
across the two fields is an understanding of 
the terminology and underlying concepts 

and methods of each. Practical questions in 
each field must be taken into account. For 
example, assessing interaction can be prob­
lematic in many real-world epidemiologic 
studies given the primary concern with bias 
and confounding. Toxicology’s narrow focus 
on identical individuals limits its applicabil­
ity in real-world situations; epidemiology’s 
emphasis on counterfactual modeling might 
help toxicologists develop better methods for 
situations when all individuals are not identi­
cal. For example, if a population consists of 
two types of individuals who respond with 
different sensitivities to two chemical expo­
sures, it is possible to show that risks in the 
population as a whole need not be concentra­
tion additive, even if they are for each type 
of individual. Collaborative investigation of 
models like these may provide new insights 
for both fields.

For epidemiologists who wish to apply 
toxicologic methods for examining inter­
action, we provide these thoughts. When 
exposures operate through nonsimilar path­
ways, toxicologists consider IA the best default 
model. If analysis is limited to low effect levels 
(when the product term in Equation 8 is neg­
ligible), or in the rare case of linear response, 
the toxicologic (IA) and epidemiologic 
(RDA) approaches reach the same conclusion. 
Current epidemiologic methods for examin­
ing interaction can then be used with little 
or no modification. For exposures operating 
through similar pathways, however, this is not 
the case. As we have seen, the departure of 
concentration additive exposures from RDA 
may be substantial even at the lowest doses. 
Fortunately, some of the approaches discussed 
below are already used by epidemiologists to 
construct exposure measures or analyze data, 
although not for examining interaction.

For exposures thought to act by similar 
mechanisms and whose individual actions can 
be well characterized, a CA model can be used 
to predict the joint effects of combinations 
from mathematical functions describing the 
individual DRCs (e.g., Howard and Webster 
2009). One can then construct noninteractive 
response surfaces for comparison with the 

Figure 4. Responses to the n = 2 TEF joint exposure.
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data, testing for mode of action and for the 
presence of interactive effects (e.g., Howard 
et al. 2010).

More simply, similarly acting exposures 
can be grouped into a single equipotent expo­
sure using a TEF-like model (or a general­
ized CA model). For dioxin-like agents, this is 
common practice (Van den Berg et al. 2006). 
Such a model is likely to be a productive 
route for examining exposure to estrogens and 
xenoestrogens, for example, or androgens and 
antiandrogens. More research is needed to 
generate the data necessary for this approach 
and to test its applicability.

A third approach might employ a simple 
biological assay to estimate the combined 
activity (e.g., dioxin-like or estrogenic) of a 
complex mixture (e.g., human serum). The 
assay result could then be used as the exposure 
measure for the mixture. A combination of 
analytical chemistry and toxicologic analysis 
could then be used to determine the contri­
bution of individual components and whether 
they explain the activity of the mixture.

In many cases, little detailed dose–response 
information is available for human popula­
tions. Here one might use the “method of 
isoboles”: When the concentration of one 
agent is plotted against the concentration of the 
other, curves of constant joint effect (isoboles, 
or contours of the response surface) must be 
negatively sloped straight lines if the exposures 
are concentration additive. This simple visual 
analysis is amenable to use even with very small 
numbers of data points (Berenbaum 1989). 
Isobolographic analysis and related methods 
for response surface analysis (Greco et al. 1995) 
may be useful when analyzing epidemiologic 
data, which is typically spaced irregularly in the 
concentration-concentration plane.

Interaction, and the terminology used to 
describe it, has long been a source of confu­
sion and debate in both epidemiology and 
toxicology (Ahlbom and Alfredsson 2005; 
Könemann and Pieters 1996). We strongly 
believe that increased discussion and collabo­
ration between the two fields will increase our 
understanding of interaction.
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